Quantum dot-based multiplexed fluorescence resonance energy transfer.

نویسندگان

  • Aaron R Clapp
  • Igor L Medintz
  • H Tetsuo Uyeda
  • Brent R Fisher
  • Ellen R Goldman
  • Moungi G Bawendi
  • Hedi Mattoussi
چکیده

We demonstrate the use of luminescent quantum dots (QDs) conjugated to dye-labeled protein acceptors for nonradiative energy transfer in a multiplexed format. Two configurations were explored: (1) a single color QD interacting with multiple distinct acceptors and (2) multiple donor populations interacting with one type of acceptor. In both cases, we showed that simultaneous energy transfer between donors and proximal acceptors can be measured. However, data analysis was simpler for the configuration where multiple QD donors are used in conjunction with one acceptor. Steady-state fluorescence results were corroborated by time-resolved measurements where selective shortening of QD lifetime was measured only for populations that were selectively engaged in nonradiative energy transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A long-wavelength quantum dot-concentric FRET configuration: characterization and application in a multiplexed hybridization assay.

Quantum dot-based concentric Förster resonance energy transfer (cFRET) is a promising modality for the development of multifunctional fluorescent probes for bioanalysis and bioimaging. To date, the scope of cFRET has been largely limited to a prototypical configuration with a particular combination of quantum dot (QD) and fluorescent dyes linked through peptides. Expansion of the scope of cFRET...

متن کامل

Use of semiconductor nanocrystals to encode microbeads for multiplexed analysis of biological samples

Microbeads encoded with semiconductor quantum dots (QDs) are suitable tools for multiplexed analyses of various biological markers using flow cytometry. We have prepared a panel of microbeads encoded with QDs of different colors emitting with different luminescence intensities using the layer-by-layer deposition technique, which consists in layering of alternately charged polyelectrolytes and n...

متن کامل

Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen

The integration of semiconductor quantum dots (QDs) into homogeneous Förster resonance energy transfer (FRET) immunoassay kits for clinical diagnostics can provide significant advantages concerning multiplexing and sensitivity. Here we present a facile and functional QD-antibody conjugation method using three commercially available QDs with different photoluminescence (PL) maxima (605 nm, 655 n...

متن کامل

Single-molecule quantum-dot fluorescence resonance energy transfer.

Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with the quantum dot/Cy5 ...

متن کامل

Interfacial Chemistry and the Design of Solid-Phase Nucleic Acid Hybridization Assays Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer

The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 51  شماره 

صفحات  -

تاریخ انتشار 2005